Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Biosensors (Basel) ; 13(5)2023 May 15.
Article in English | MEDLINE | ID: covidwho-20235396

ABSTRACT

Since the global outbreak of coronavirus disease 2019 (COVID-19), it has spread rapidly around the world. The nucleocapsid (N) protein is one of the most abundant SARS-CoV-2 proteins. Therefore, a sensitive and effective detection method for SARS-CoV-2 N protein is the focus of research. Here, we developed a surface plasmon resonance (SPR) biosensor based on the dual signal-amplification strategy of Au@Ag@Au nanoparticles (NPs) and graphene oxide (GO). Additionally, a sandwich immunoassay was utilized to sensitively and efficiently detect SARS-CoV-2 N protein. On the one hand, Au@Ag@Au NPs have a high refractive index and the capability to electromagnetically couple with the plasma waves propagating on the surface of gold film, which are harnessed for amplifying the SPR response signal. On the other hand, GO, which has the large specific surface area and the abundant oxygen-containing functional groups, could provide unique light absorption bands that can enhance plasmonic coupling to further amplify the SPR response signal. The proposed biosensor could efficiently detect SARS-CoV-2 N protein for 15 min and the detection limit for SARS-CoV-2 N protein was 0.083 ng/mL, with a linear range of 0.1 ng/mL~1000 ng/mL. This novel method can meet the analytical requirements of artificial saliva simulated samples, and the developed biosensor had a good anti-interference capability.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , Surface Plasmon Resonance/methods , Biosensing Techniques/methods , SARS-CoV-2 , Gold , Immunoassay/methods , COVID-19/diagnosis
2.
Microorganisms ; 11(5)2023 May 15.
Article in English | MEDLINE | ID: covidwho-20232215

ABSTRACT

SARS-CoV-2 genomic mutations outside the spike protein that may increase transmissibility and disease severity have not been well characterized. This study identified mutations in the nucleocapsid protein and their possible association with patient characteristics. We analyzed 695 samples from patients with confirmed COVID-19 in Saudi Arabia between 1 April 2021, and 30 April 2022. Nucleocapsid protein mutations were identified through whole genome sequencing. 𝜒2 tests and t tests assessed associations between mutations and patient characteristics. Logistic regression estimated the risk of intensive care unit (ICU) admission or death. Of the 60 mutations identified, R203K was the most common, followed by G204R, P13L, E31del, R32del, and S33del. These mutations were associated with reduced risk of ICU admission. P13L, E31del, R32del, and S33del were also associated with reduced risk of death. By contrast, D63G, R203M, and D377Y were associated with increased risk of ICU admission. Most mutations were detected in the SR-rich region, which was associated with low risk of death. The C-tail and central linker regions were associated with increased risk of ICU admission, whereas the N-arm region was associated with reduced ICU admission risk. Consequently, mutations in the N protein must be observed, as they may exacerbate viral infection and disease severity. Additional research is needed to validate the mutations' associations with clinical outcomes.

3.
Mol Cell Proteomics ; 22(7): 100579, 2023 May 20.
Article in English | MEDLINE | ID: covidwho-2324953

ABSTRACT

There is still much to uncover regarding the molecular details of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. As the most abundant protein, coronavirus nucleocapsid (N) protein encapsidates viral RNAs, serving as the structural component of ribonucleoprotein and virion, and participates in transcription, replication, and host regulations. Virus-host interaction might give clues to better understand how the virus affects or is affected by its host during infection and identify promising therapeutic candidates. Considering the critical roles of N, we here established a new cellular interactome of SARS-CoV-2 N by using a high-specific affinity purification (S-pulldown) assay coupled with quantitative mass spectrometry and immunoblotting validations, uncovering many N-interacting host proteins unreported previously. Bioinformatics analysis revealed that these host factors are mainly involved in translation regulations, viral transcription, RNA processes, stress responses, protein folding and modification, and inflammatory/immune signaling pathways, in line with the supposed actions of N in viral infection. Existing pharmacological cellular targets and the directing drugs were then mined, generating a drug-host protein network. Accordingly, we experimentally identified several small-molecule compounds as novel inhibitors against SARS-CoV-2 replication. Furthermore, a newly identified host factor, DDX1, was verified to interact and colocalize with N mainly by binding to the N-terminal domain of the viral protein. Importantly, loss/gain/reconstitution-of-function experiments showed that DDX1 acts as a potent anti-SARS-CoV-2 host factor, inhibiting the viral replication and protein expression. The N-targeting and anti-SARS-CoV-2 abilities of DDX1 are consistently independent of its ATPase/helicase activity. Further mechanism studies revealed that DDX1 impedes multiple activities of N, including the N-N interaction, N oligomerization, and N-viral RNA binding, thus likely inhibiting viral propagation. These data provide new clues to better depiction of the N-cell interactions and SARS-CoV-2 infection and may help inform the development of new therapeutic candidates.

4.
J Inflamm Res ; 16: 1867-1877, 2023.
Article in English | MEDLINE | ID: covidwho-2316345

ABSTRACT

Background: SARS-CoV-2-induced acute lung injury but its nucleocapsid (N) and/or Spike (S) protein involvements in the disease pathology remain elusive. Methods: In vitro, the cultured THP-1 macrophages were stimulated with alive SARS-CoV-2 virus at different loading dose, N protein or S protein with/without TICAM2-siRNA, TIRAP-siRNA or MyD88-siRNA. The TICAM2, TIRAP and MyD88 expression in the THP-1 cells after N protein stimulation were determined. In vivo, naïve mice or mice with depletion macrophages were injected with N protein or dead SARS-CoV-2. The macrophages in the lung were analyzed with flow cytometry, and lung sections were stained with H&E or immunohistochemistry. Culture supernatants and serum were harvested for cytokines measurements with cytometric bead array. Results: Alive SARS-CoV-2 virus or N protein but not S protein induced high cytokine releases from macrophages in a time or virus loading dependent manner. MyD88 and TIRAP but not TICAM2 were highly involved in macrophage activation triggered by N protein whilst both inhibited with siRNA decreased inflammatory responses. Moreover, N protein and dead SARS-CoV-2 caused systemic inflammation, macrophage accumulation and acute lung injury in mice. Macrophage depletion in mice decreased cytokines in response to N protein. Conclusion: SARS-CoV-2 and its N protein but not S protein induced acute lung injury and systemic inflammation, which was closely related to macrophage activation, infiltration and release cytokines.

5.
Infektsiya I Immunitet ; 12(4):771-778, 2022.
Article in English | Web of Science | ID: covidwho-2311884

ABSTRACT

Confirming detected SARS-CoV-2-specific antibodies is necessary to reveal immune response in COVID-19 convalescent subjects as well as to conduct population studies by screening for specific antibodies to assess rate of COVID-19 prevalence. With this purpose St. Petersburg Pasteur Institute was the first in Russia to develop the ELISA kit for the quantitative determination of human IgG to the SARS-CoV-2 nucleocapsid (N-CoV-2-IgG PS). Arbitrary units (AU/ml) were used to assess the level of antibodies. The data shown in AU/ml were recalculated later to the international units (BAU/ml) in accordance with established the First WHO International Standard for anti-SARS-CoV-2 human Immunoglobulin. Comparing the data of the N-CoV-2-IgG PS calibration curve with those of the First WHO International Standard for anti-SARS- CoV-2 human Immunoglobulin revealed a complete inter-assay association (r = 0.999, R-2 = 0.997) allowing to find that 1BAU/ml = 5.97 AU/ml. The aim of the study was to characterize the "SARS-CoV-2 protein N Human IgG Quantitative ELISA Kit" (N-CoV-2-IgG PS), compare quantitative and qualitative data of ELISA kits, assess a correlation between the binding antibodies to SARS-CoV-2 N proteins and the neutralizing antibodies against SARS-CoV-2. The data of correlation analysis of the 83 COVID-19 convalescent blood plasma samples a significant relationship between the antibodies quantitative values and titers SARS-CoV-2-specific antibody (r = 0.8436, R-2 = 0.7802) as well as a moderate relationship between antibody concentration and positivity index (r = 0.6648, R-2 = 0.3307), assessed by Chaddock scale. Comparing concentration of N-protein binding antibodies with neutralizing antibody titers level uncovered data consistency obtained by quantitative and virus microneutralization assays (r = 0.7310, R-2 = 0.6527) used in parallel to analyze 80 blood plasma samples obtained from COVID-19 patients and convalescents. AUC under the ROC curve comprised 0.701 (P < 0.0001) evidencing about a satisfactory informative value for "N-CoV-2-IgG PS" compared with microneutralization assay. In addition, the efficacy of the "N-CoV-2-IgG PS" was 95%, while the positive and negative prognostic value was 97% and 87%, respectively. The data obtained confirmed a correlation between N-protein binding antibody level and neutralizing antibody titer. Checking inter-assay agreement evidenced about acceptance for informativeness and efficacy of using "N-CoV-2-IgG PS", thereby confirming an opportunity to apply the Kit to screen for SARS-CoV-2 N protein-specific IgG antibody level and assess seroprevalence in diverse population cohorts.

6.
Talanta ; 260: 124614, 2023 Aug 01.
Article in English | MEDLINE | ID: covidwho-2311488

ABSTRACT

A novel immunosensor based on electrochemiluminescence resonance energy transfer (ECL-RET) for the sensitive determination of N protein of the SARS-CoV-2 coronavirus is described. For this purpose, bifunctional core@shell nanoparticles composed of a Pt-coated Au core and finally decorated with small Au inlays (Au@Pt/Au NPs) have been synthesized to act as ECL acceptor, using [Ru (bpy)3]2+ as ECL donor. These nanoparticles are efficient signaling probes in the immunosensor developed. The proposed ECL-RET immunosensor has a wide linear response to the concentration of N protein of the SARS-CoV-2 coronavirus with a detection limit of 1.27 pg/mL. Moreover, it has a high stability and shows no response to other proteins related to different virus. The immunosensor has achieved the quantification of N protein of the SARS-CoV-2 coronavirus in saliva samples. Results are consistent with those provided by a commercial colorimetric ELISA kit. Therefore, the developed immunosensor provides a feasible and reliable tool for early and effective detection of the virus to protect the population.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , Gold , SARS-CoV-2 , Luminescent Measurements/methods , Biosensing Techniques/methods , Immunoassay/methods , COVID-19/diagnosis , Electrochemical Techniques/methods , Limit of Detection
7.
Transboundary and Emerging Diseases ; 2023, 2023.
Article in German | ProQuest Central | ID: covidwho-2305942

ABSTRACT

Feline infectious peritonitis (FIP), which is caused by feline infectious peritonitis virus (FIPV), is a fatal and immunologically mediated infectious disease among cats. At present, due to the atypical clinical symptoms and clinicopathological changes, the clinical diagnosis of FIP is still difficult. The gold standard method for the differential diagnosis of FIP is immunohistochemistry (IHC) which is time-consuming and requires specialized personnel and equipment. Therefore, a rapid and accurate clinical diagnostic method for FIPV infection is still urgently needed. In this study, based on the etiological investigation of FIPV in parts of southern China, we attempted to explore a new rapid and highly sensitive method for clinical diagnosis. The results of the etiological investigation showed that the N gene of the FIPV BS8 strain had the highest homology with other strains. Based on this, a specific FIPV BS8 N protein monoclonal antibody was successfully prepared by expression of the recombinant proteins, immunization of mice, fusion and selection of hybridoma cell lines, and screening and purification of monoclonal antibodies. Furthermore, we carried out a time-saving combination method including indirect immunofluorescence assay (IFA) and nested reverse transcription polymerase chain reaction (RT-nPCR) to examine FIP-suspected clinical samples. These results were 100% consistent with IHC. The results revealed that the combined method could be a rapid and accurate application in the diagnosis of suspected FIPV infection within 24 hours. In conclusion, the combination of IFA and RT-nPCR was shown to be a fast and reliable method for clinical FIPV diagnosis. This study will provide insight into the exploitation of FIPV N antibodies for the clinical diagnosis of FIP-suspected ascites samples.

8.
Biosens Bioelectron ; 232: 115316, 2023 Jul 15.
Article in English | MEDLINE | ID: covidwho-2301510

ABSTRACT

Digital enzyme linked immunosorbent assays (ELISA) can be used to detect various antigens such as spike (S) or nucleocapsid (N) proteins of SARS-CoV-2, with much higher sensitivity compared to that achievable using conventional antigen tests. However, the use of microbeads and oil for compartmentalization in these assays limits their user-friendliness and causes loss of assay information due to the loss of beads during the process. To improve the sensitivity of antigen test, here, we developed an oil- and bead-free single molecule counting assay, with rolling circle amplification (RCA) on a substrate. With RCA, the signal is localized at the captured region of an antigen, and the signal from a single antigen molecule can be visualized using the same immune-reaction procedures as in the conventional ELISA. Substrate-based single molecule assay was theoretically evaluated for kd value, and the concentration of capture and detection antibodies. As a feasibility test, biotin-conjugated primer and mouse IgG conjugates were detected even at femto-molar concentrations with this digital immuno-RCA. Using this method, we detected the N protein of SARS-CoV-2 with a limit of detection less than 1 pg/mL more than 100-fold improvement compared to the detection using conventional ELISA. Furthermore, testing of saliva samples from COVID-19 patients and healthy controls (n = 50) indicated the applicability of the proposed method for detection of SARS-CoV-2 with 99.5% specificity and 90.9% sensitivity.


Subject(s)
Biosensing Techniques , COVID-19 , Animals , Mice , SARS-CoV-2 , COVID-19/diagnosis , Saliva , Enzyme-Linked Immunosorbent Assay/methods , Antigens , Sensitivity and Specificity , Antibodies, Viral
9.
Viruses ; 15(4)2023 04 13.
Article in English | MEDLINE | ID: covidwho-2293664

ABSTRACT

BACKGROUND: The nucleocapsid protein of SARS-CoV-2 participates in viral replication, transcription, and assembly. Antibodies against this protein have been proposed for the epidemiological analysis of the seroprevalence of COVID-19 associated with natural infection by SARS-CoV-2. Health workers were one of the most exposed populations, and some had an asymptomatic form of the disease, so detecting IgG antibodies and subclasses against the N protein can help to reclassify their epidemiological status and obtain information about the effector mechanisms associated with viral elimination. METHODS: In this study, we analyzed 253 serum samples collected in 2021 and derived from health workers, and evaluated the presence of total IgG and subclasses against the N protein of SARS-CoV-2 by indirect ELISA. RESULTS: From the analyzed samples, 42.69% were positive to anti-N IgG antibodies. A correlation between COVID-19 asymptomatic infection and IgG antibodies was observed (p = 0.006). The detected subclasses were: IgG1 (82.4%), IgG2 (75.9%), IgG3 (42.6%), and IgG4 (72.6%). CONCLUSIONS: This work provides evidence about the high seroprevalence of total IgG and subclasses of anti-N and their relations with the asymptomatic infection of SARS-CoV-2 and related symptoms.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Seroepidemiologic Studies , Asymptomatic Infections , Nucleocapsid , Immunoglobulin G , Antibodies, Viral
10.
Weishengwuxue Tongbao = Microbiology ; 49(12):5256, 2022.
Article in English | ProQuest Central | ID: covidwho-2269953

ABSTRACT

[Background] The coronavirus disease 2019(COVID-19) pandemic has lasted for nearly three years in the globe, which has not only caused serious harm to humans but also affected companion animals. The COVID-19 vaccines for human have been used globally, while those for animals are rarely reported. [Objective] To develop a bivalent vaccine against both severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) and rabies virus(RABV) for animal use. [Methods] We cloned the S and S1 genes of SARS-CoV-2 into the region between G and L genes of the attenuated RABV vaccine strain rHEP-Flury to construct the recombinant plasmids pHEP-nCOV-S and pHEP-nCOV-S1, respectively.The two plasmids were respectively co-transfected into BHK-21 cells with the helper plasmids and finally the recombinant viruses rHEP-nCOV-S and rHEP-nCOV-S1 were rescued. The recombinant viruses were confirmed by RT-PCR and direct fluorescent antibody staining against RABV N protein.Western blotting was employed to detect the expression of S and S1 proteins in the cells infected with the recombinant viruses. The growth curves, pathogenicity, and immunogenicity of recombinant viruses were confirmed in NA cells and mice. [Results] The rescued recombinant viruses rHEP-nCOV-S and rHEP-nCOV-S1 respectively carrying the S and S1 genes of SARS-CoV-2 were confirmed by direct fluorescent antibody assay based on the green fluorescence from the supernatants 7 days post infection.rHEP-nCOV-S1 rather than rHEP-nCOV-S showed stronger proliferation and diffusion abilities than the parental virus rHEP-Flury in NA cells. The specific bands at 72 kDa and 144 kDa in the Western blotting confirmed the efficient expression of S and S1 in the recombinant viruses, respectively. The mice vaccinated with the recombinant viruses did not show significant changes in the body weight compared with those vaccinated with rHEP-Flury, and the recombinant viruses induced the production of neutralizing antibody against RABV in mice. [Conclusion] The production of the recombinant RABV carrying the S/S1 gene of SARS-CoV-2 provides a foundation for the development of the bivalent vaccine against both SARS-CoV-2 and rabies virus for animal use.

11.
Epidemiologiya i Vaktsinoprofilaktika ; 22(1):28-37, 2023.
Article in Russian | Scopus | ID: covidwho-2267039

ABSTRACT

Relevance. Many countries around the world are developing effective vaccines against SARS-CoV-2. The measure of the effectiveness of the vaccination process has traditionally been antibody production. The frequency and intensity of adverse reactions is also an important factor in making a decision regarding a vaccine. This study presents the results of the evaluation of the formation of humoral immunity and the occurrence of reactions in response to the administration of Sputnik V (Gam-COVID-Vac), RF, and Sinopharm (BBIBP-CorV), PRC. Aim. Analyze immunogenicity and reactogenicity of COVID-19 vaccines used in the Republic of Belarus (Sputnik V and Sinopharm). Materials and methods. Evaluation of postvaccination immune response by enzyme immunoassay and differential enzyme immunoassay for class G immunoglobulins to S-and N-proteins SARS-CoV-2. Blood plasma of the study participants was used as biological material. Blood sampling was performed 3 times: immediately before the first vaccine dose, on day 42, and 6 months after the first vaccine dose. To evaluate the frequency and intensity of postvaccination reactions, study participants were questioned. Results. At 42 days after administration of both vaccines, antibody levels are rising, with a significantly higher quantitative IgG count for the Sputnik V vaccine. This trend is also observed 6 months after the first dose of both vaccines, both among those previously infected with SARS-CoV-2 and those without a history of COVID-19. The comparison of Sputnik V and Sinopharm vaccine groups in terms of IgG (BAU/ml) levels to S-and N-proteins revealed a statistically significant difference in IgG levels to S-protein: the Sputnik V vaccine group had significantly higher IgG levels to S-protein than the Sinopharm vaccine group (p = 0.0000196). The incidence of adverse reactions in this study was 45%. All reactions noted were mild to moderate in severity. The most common were soreness and redness at the injection site, elevated body temperature, and a combination of several reactions. The increased body temperature after vaccination was more common among those vaccinated with the Sputnik V vaccine. Conclusion. Compared to Sinopharm, Sputnik V vaccine produces higher antibody level. Adverse reactions were observed in both vaccinated groups. However, significant statistical differences were found with regard to fever in the Sputnik V vaccine group, which occurred more frequently. © 2023, Numikom. All rights reserved.

12.
Cell Chem Biol ; 30(3): 261-277.e8, 2023 03 16.
Article in English | MEDLINE | ID: covidwho-2288731

ABSTRACT

Pulmonary fibrosis is a typical sequela of coronavirus disease 2019 (COVID-19), which is linked with a poor prognosis for COVID-19 patients. However, the underlying mechanism of pulmonary fibrosis induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. Here, we demonstrated that the nucleocapsid (N) protein of SARS-CoV-2 induced pulmonary fibrosis by activating pulmonary fibroblasts. N protein interacted with the transforming growth factor ß receptor I (TßRI), to disrupt the interaction of TßRI-FK506 Binding Protein12 (FKBP12), which led to activation of TßRI to phosphorylate Smad3 and boost expression of pro-fibrotic genes and secretion of cytokines to promote pulmonary fibrosis. Furthermore, we identified a compound, RMY-205, that bound to Smad3 to disrupt TßRI-induced Smad3 activation. The therapeutic potential of RMY-205 was strengthened in mouse models of N protein-induced pulmonary fibrosis. This study highlights a signaling pathway of pulmonary fibrosis induced by N protein and demonstrates a novel therapeutic strategy for treating pulmonary fibrosis by a compound targeting Smad3.


Subject(s)
COVID-19 , Pulmonary Fibrosis , Animals , Mice , COVID-19/complications , Fibrosis , Nucleocapsid Proteins/therapeutic use , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/drug therapy , SARS-CoV-2
13.
J Biophotonics ; 16(7): e202300004, 2023 07.
Article in English | MEDLINE | ID: covidwho-2267810

ABSTRACT

The fast spread and transmission of the coronavirus 2019 (COVID-19) has become one of serious global public health problems. Herein, a surface enhanced Raman spectroscopy-based lateral flow immunoassay (LFA) was developed for the detection of SARS-CoV-2 antigen. Using uniquely designed core-shell nanoparticle with embedded Raman probe molecules as the indicator to reveal the concentration of target protein, excellent quantitative performance with a limit of detection (LOD) of 0.03 ng/mL and detection range of 10-1000 ng/mL can be achieved within 15 min. Besides, the detection of spiked virus protein in human saliva was also performed with a portable Raman spectrometer, proposing the feasibility of the method in practical applications. This easy-to-use, rapid and accurate method would provide a point-of-care testing way as the ideal alternative for current detection requirement of virus-related biomarkers.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , SARS-CoV-2 , COVID-19/diagnosis , Spectrum Analysis, Raman/methods , Biosensing Techniques/methods , Immunoassay/methods , Gold
14.
Moscow Univ Biol Sci Bull ; 77(4): 251-257, 2022.
Article in English | MEDLINE | ID: covidwho-2267502

ABSTRACT

The SARS-CoV-2 is rapidly evolving and new mutations are being reported from different parts of the world. In this study, we investigated the variations occurring in the nucleocapsid phosphoprotein (N-protein) of SARS-CoV-2 from India. We used several in silico prediction tools to characterise N-protein including IEDB webserver for B cell epitope prediction, Vaxijen 2.0 and AllergenFP v.1.0 for antigenicity and allergenicity prediction of epitopes, CLUSTAL Omega for mutation identification and PONDR webserver for disorder prediction, PROVEAN score for protein function and iMutantsuite for protein stability prediction. Our results show that 81 mutations have occurred in this protein among Indian SARS-CoV-2 isolates. Subsequently, we characterized the N-protein epitopes to identify seven most promising peptides. We mapped these mutations with seven N-protein epitopes to identify the loss of antigenicity in two of them, suggesting that the mutations occurring in the SARS-CoV-2 genome contribute to the alteration in the properties of epitopes. Altogether, our data strongly indicates that N-protein is gaining several mutations in its B cell epitope regions that might alter protein function.

15.
Anal Bioanal Chem ; 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2242651

ABSTRACT

Serological antibody tests are useful complements of nuclei acid detection for SARS-CoV-2 diagnosis, which can significantly improve diagnostic accuracy. However, antibody detection in serum or plasma remains challenging to do with high sensitivity. In this study, Ag nanoparticles with ultra-thin Au shells embedded with 4-mercaptobenzoic acid (MBA) (AgMBA@Au) were manufactured and then assembled onto Fe3O4 surface by electrostatic interaction to construct the Fe3O4-AgMBA@Au nanoparticles (NPs) with magnetic-Raman-colorimetric properties. Based on the composite nanoparticles, a colorimetric and Raman dual-mode lateral flow immunoassay (LFIA) for ultrasensitive identification of SARS-CoV-2 nucleocapsid (N) protein antibody was constructed. The magnetic nanoparticles (Fe3O4 NPs) were acted as the core and coated a layer of AgMBA@Au particles on the surface by electrostatic interaction to prepare Fe3O4-AgMBA@Au NPs, which can amplify the SERS signal due to multiple AgMBA@Au particles concentrated on a single magnetic nanoparticle. Moreover, the Fe3O4-AgMBA@Au NPs facilitated pre-purifying sample using magnetic separation, and complex matrix interference would be greatly decreased in the detection. The Fe3O4-AgMBA@Au NPs modified with N protein recognized and bound with N protein antibodies, which were trapped on the T-line, forming color band for observing detection. Under optimal conditions, the N protein antibodies could be qualitatively detected in colorimetric mode with the visual limit of 10-8 mg/mL and quantitatively detected by SERS signals between 10-6 and 10-10 mg /mL with 0.08 pg/mL detection limit. The coefficients variations (CV) of intra-assay was 8.0%, whereas of inter-assay was 11.7%, confirming of good reproducibility. Finally, this approach was able to discriminate between positive, negative, and weakly positive samples when detecting 107 clinical serum samples. The process enables highly sensitive quantitative assays that are valuable for evaluating disease processes and guiding treatment. Colorimetric and Raman dual-mode LFIA detection of SARS-CoV-2 N protein antibody based on Fe3O4-AgMBA@Au nanoparticles.

16.
J Biochem ; 173(6): 447-457, 2023 May 29.
Article in English | MEDLINE | ID: covidwho-2235398

ABSTRACT

The interaction of the ß-coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) nucleocapsid (N) protein with genomic RNA is initiated by specific RNA regions and subsequently induces the formation of a continuous polymer with characteristic structural units for viral formation. We hypothesized that oligomeric RNAs, whose sequences are absent in the 29.9-kb genome sequence of SARS-CoV-2, might affect RNA-N protein interactions. We identified two such hexameric RNAs, In-1 (CCGGCG) and G6 (GGGGGG), and investigated their effects on the small filamentous/droplet-like structures (< a few µm) of N protein-genomic RNA formed by liquid-liquid phase separation. The small N protein structures were sequence-specifically enhanced by In-1, whereas G6 caused them to coalesce into large droplets. Moreover, we found that a guanosine 12-mer (G12, GGGGGGGGGGGG) expelled preexisting genomic RNA from the small N protein structures. The presence of G12 with the genomic RNA suppressed the formation of the small N protein structures, and alternatively apparently altered phase separation to induce the formation of large droplets with unclear phase boundaries. We showed that the N-terminal RNA-binding domain is required for the stability of the small N protein structures. Our results suggest that G12 may be a strong inhibitor of the RNA-N protein interaction.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , RNA, Viral/genetics , RNA, Viral/chemistry , RNA, Viral/metabolism , Protein Binding
17.
Viruses ; 15(1)2022 Dec 21.
Article in English | MEDLINE | ID: covidwho-2231909

ABSTRACT

The coronavirus disease 2019 pandemic, elicited by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is ongoing. Currently accessible antigen-detecting rapid diagnostic tests are limited by their low sensitivity and detection efficacy due to evolution of SARS-CoV-2 variants. Here, we produced and characterized an anti-SARS-CoV-2 nucleocapsid (N) protein-specific monoclonal antibody (mAb), 2A7H9. Monoclonal antibody 2A7H9 and a previously developed mAb, 1G10C4, have different specificities. The 2A7H9 mAb detected the N protein of S clade, delta, iota, and mu but not omicron, whereas the 1G10C4 antibody recognized the N protein of all variants under study. In a sandwich enzyme-linked immunosorbent assay, recombinant N protein bound to the 1G10C4 mAb could be detected by both 1G10C4 and 2A7H9 mAbs. Similarly, N protein bound to the 2A7H9 mAb was detected by both mAbs, confirming the existence of dimeric N protein. While the 1G10C4 mAb detected omicron and mu with higher efficiency than S clade, delta, and iota, the 2A7H9 mAb efficiently detected all the strains except omicron, with higher affinity to S clade and mu than others. Combined use of 1G10C4 and 2A7H9 mAb resulted in the detection of all the strains with considerable sensitivity, suggesting that antibody combinations can improve the simultaneous detection of virus variants. Therefore, our findings provide insights into the development and improvement of diagnostic tools with broader specificity and higher sensitivity to detect rapidly evolving SARS-CoV-2 variants.


Subject(s)
COVID-19 , Nucleocapsid Proteins , Humans , Antibodies, Monoclonal , SARS-CoV-2/genetics , COVID-19/diagnosis , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay/methods , Recombinant Proteins , Spike Glycoprotein, Coronavirus
18.
Diam Relat Mater ; 134: 109775, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2237510

ABSTRACT

In this study, we introduced H-terminated diamond solution-gate field-effect transistor (H-diamond SGFET) to detect trace SARS-CoV-2 N-protein, which plays an important role in replication and transcription of viral RNA. 1-Pyrenebutyric acid-N-hydroxy succinimide ester (Pyr-NHS) was modified on H-diamond surface as linker, on which the specific antibody of SARS-CoV-2 N-protein was catenated. Fourier transform infrared spectrum, scanning electron microscope and energy dispersive spectrum were utilized to demonstrate the modification of H-diamond with Pyr-NHS and antibody. Shifts of IDS(max) at VGS = -500 mV in transfer characteristics of H-diamond SGFET was observed to determine N-protein concentration in phosphate buffer solution. Good linear relationship between IDS(max) and log10(N-protein) was observed from 10-14 to 10-5 g/mL with goodness of fit R2 = 0.90 and sensitivity of 1.98 µA/Log10 [concentration of N-protein] at VDS = -500 mV, VGS = -500 mV. Consequently, this prepared H-diamond SGFET biosensor may provide a new idea for diagnosis of SARS-CoV-2 due to a wide detection range from 10-14 to 10-5 g/mL and low limit of detection 10-14 g/mL.

19.
J Public Health Afr ; 14(1): 2242, 2023 Jan 27.
Article in English | MEDLINE | ID: covidwho-2237042

ABSTRACT

Background: Seroprevalence studies, to estimate the proportion of people that has been infected by SARS-CoV-2 are importance in African countries, where incidence is among the lowest in the world. Objective: This study aimed at evaluating the exposure to SARS-CoV-2 within a university setting of Cameroon. Methods: A cross-sectional study performed in December 2020 - December 2021, among students and staffs of the Evangelical University of Cameroon. COVID-19 antigen rapid detection test (RDT) was performed using Standard Q Biosensor, and one year after SARS-CoV-2 antibody-test was performed within the same population using RDT and chemiluminescence immunoassay (CLIA). Results: 106 participants were enrolled (80% students), female sex was the most represented. Positivity to SARS-CoV-2 was 0.0% based on antigen RDTs. The seroprevalence of SARSCoV- 2 antibodies was estimated at 73.6% (95% CI. 64.5-81.0) for IgG and 1.9% (95% CI. 0.2-6.8) for IgM/IgG with RDTs, and 91.9% (95% CI. 84.7-96.4) for anti-nucleocapsid with CLIA. 95.3% (101) reported having developed at least one of the known COVID-19 symptoms (cough and headache being the most common). 90.3% (28) of people who experienced at least one of these symptoms developed IgG antibodies. 40.6% (43) of participants took natural herbs, whereas 55.7% (59) took conventional drugs. The most used herb was Zingiber officinale, while the most used drugs were antibiotics. Conclusion: In this Cameroonian University community, SARS-CoV-2 seroprevalence is high, with a greater detection using advanced serological assays. This indicates a wide viral exposure, and the need to adequate control measures especially for those experiencing any related COVID-19 symptoms.

20.
Pathogens ; 12(2)2023 Feb 03.
Article in English | MEDLINE | ID: covidwho-2225487

ABSTRACT

SARS-CoV-2 has been a pandemic threat to human health and the worldwide economy, but efficient treatments are still lacking. Type I and III interferons are essential for controlling viral infection, indicating that antiviral innate immune signaling is critical for defense against viral infection. Phase separation, one of the basic molecular processes, governs multiple cellular activities, such as cancer progression, microbial infection, and signaling transduction. Notably, recent studies suggest that phase separation regulates antiviral signaling such as the RLR and cGAS-STING pathways. Moreover, proper phase separation of viral proteins is essential for viral replication and pathogenesis. These observations indicate that phase separation is a critical checkpoint for virus and host interaction. In this study, we summarize the recent advances concerning the regulation of antiviral innate immune signaling and SARS-CoV-2 infection by phase separation. Our review highlights the emerging notion that phase separation is the robust modulator of innate antiviral signaling and viral infection.

SELECTION OF CITATIONS
SEARCH DETAIL